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Abstract

Agent based intrusion detection systems (IDS) have advantages such as scalability,

recon�gurability, and survivability. In this paper, we introduce a mobile-agent based

IDS, called ABIDE (Agent Based Intrusion Detection Environment). ABIDE is com-

prised of various types of agents, all of which are mobile, lightweight, and specialized.

The most common form of agent is the DMA (Data Mining Agent), which randomly

moves around the network and collects information. The DMA then relays the infor-

mation it has gathered to a DFA (Data Fusion Agent) which assesses the likelihood of

intrusion. As we show in this paper, there is a quanti�able relationship between the

number of DMA and the probability of detecting an intrusion. We study this relation-

ship and its implications.
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1 Introduction

An intrusion to a computer system may be indicated by abnormal network tra�c, anomalous

user activity, or application misbehavior. Intrusion detection systems (IDS)1 which focus on

detecting abnormal network activity are called network-based IDS, whereas intrusion detec-

tion systems that focus on detecting abnormal host activity are called host-based IDS. In

addition, some \hybrid" IDS have sensors which collect both host and network data.

Traditional IDS which use a monolithic architecture (i.e., a centralized architecture of

data collection and analysis) have a variety of problems. These problems include introducing

a single point of failure (which is bad for survivability), lack of scalability, and in addition

traditional IDS may be di�cult to recon�gure. To overcome these shortcomings, agent based

IDS which are distributed, scalable, and re-con�gurable have become popular [1],[2]. To take

advantage of this agent based IDS idea, the US Naval Research Laboratory is designing a

host-based intrusion detection system called ABIDE (agent based intrusion detection envi-

ronment),2. that uses mobile agent technology. ABIDE di�ers from other agent-based IDS,

which usually introduce some level of coordinated communications among IDS components,

in the following way:

To avoid a targeted attack to disable the IDS, all agents randomly move

around monitoring hosts. There is no �xed infrastructure, except that each host

needs to be monitored, and has an agent-platform that can host agents when they

decide to move in. There is neither a central site for analysis, nor a scheduler for

agents in ABIDE. Also, to make the agent lightweight (i.e., using a small amount

of code, which reduces network overhead associated with agent movement), tasks

are split among di�erent kinds of agents that perform di�erent functions.

In ABIDE, there are four di�erent kinds of agents. These agents have an implied hierarchy

for the purpose of data and command ow.

1. A data mining agent (DMA) roams around (i.e., randomly chooses hosts and moves

to the hosts) and acquires environmental information. It is small, lightweight, and

specialized. For example, a DMA may be tasked to verify a checksum on an import

system binary such as the Unix PS binary. If the agent �nds suspicious data, it will

acquire it for further analysis.

2. A data fusion agent (DFA) roams around and randomly interacts with the various

DMA. It receives the DMA data payload and builds a larger picture of events from

this data. As the DFA collects data, it can apply classic IDS techniques to determine

whether an intrusion is taking place. Of course, when the DMA and DFA meet up is

a function of time and the size of the network.
1Abbreviations can be taken as either singular or plural depending upon the context.
2The ABIDE idea grew out of the work of Michael Reed while he was at NRL [3, 4]
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3. A probe agent (PA) is dispatched by a DFA to perform a test to con�rm intrusion.

4. Once the DFA has decided that a system has been compromised, a corrective agent

(CA) can be dispatched to take actions. The CA is the only agent empowered to change

system state on the host systems.

In this paper, we focus on the �rst two types of agents about which ABIDE is concerned.

We study the probabilistic behavior of the DMA reporting to a DFA. Speci�cally, we are

concerned with two questions:

� Q1 | Given a network of a �xed number of hosts and a �xed number of DMA, what

is the probability of detecting an intrusion?

� Q2 | Given a network of a �xed number of hosts, if we want to detect an intrusion

with a certain con�dence, how many DMA have to be deployed?

2 Special Case

In this section, we consider the situation of K DMA randomly visiting nodes of a network

to discover various pieces of information and report this information back to one DFA. Each

individual piece of information that a DMA obtains may not be in itself, enough to alert the

DFA to an intrusion; however an aggregate of the individual pieces of information collected

by the DMA may alert the DFA to an intrusion. It is this threshold criteria with which

we are concerned. Once this threshold is reached, the DFA deploys a PA. Our analysis

stops at the decision to deploy a PA. We refer to each host which a DMA visits as a node

�i; i = 1; : : : ;M . We assume that, as each DMA randomly travels from node to node, it picks

up a unique atom of information �i at each node �i. In our special case, a DMA never visits

the same node twice. (In reality, a DMA may visit the same node more than once, due to the

randomness of its travels, but it must visit a given �xed number of unique nodes during its

sojourn. We examine the simple case, which is equivalent.) For simplicity, we assume that,

at a speci�c time, the DMA transfers its atoms to the DFA. (In reality both the DMA and

the DFA randomly travel the network. When a DMA meets up with a DFA, it then transfers

its atoms to the DFA.) For simplicity, we assume that there is only one DFA. If the DFA has

su�cient atoms, it declares that the intrusion threshold � has been reached and therefore it

deploys a PA.

This is similar to the threshold schemes discussed in [5], in that below the threshold level

of �, one can assume no knowledge, but at or above �, the game is up. In this paper we do

not discuss how � is determined, nor do we discuss the case where, below �, the DFA has no

knowledge of an intrusion. In addition, we have made further simplifying assumptions and

will discuss the general situation in future work. What is salient about our work in this paper

is that even with the assumptions made for simpli�cation, the mathematics are quite di�cult
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to derive and computationally quite expensive to perform. We are presently investigating

approximations to the formulas presented in this paper to speed up the computation and to

develop \rules of thumb."

2.1 Formalism

We will now formally present our problem.

� The network is made up of M nodes �i , i = 1; : : : ;M .

� There are K DMA Ak; k = 1; : : : ;K.

� Each Ak visits n and only n nodes, and each node is distinct. Ak obtains a unique

atom from each node. Every DMA that visits the same node �i receives the same atom

�i.

� After Ak has visited n nodes, it gives the n (unique) atoms �ki ; i = 1; : : : ; n to (the

single) DFA.

Note that even though Ak has n unique atoms, Ak0 might have some of the same atoms

as Ak. Therefore, when all of the Ak have reported to the DFA, we can then view the DFA

as a bag of atoms, i.e., an atom might be in DFA more than once. We are only interested in

the unique number of atoms in the DFA. Note that since visiting the node �i is equivalent

to obtaining the atom �i, so we will sometimes blur the distinction.

Let PK(M;n : T ) be the probability that the DFA contains exactly T unique atoms, given

that K agents have searched through M nodes, picking n (distinct) nodes per agent. Let

us consider a simple example �rst. Keep in mind the actual probabilistic term of interest,

when a threshold � is given, is the more complicated
P

T�� PK(M;n : T ). This allows us

to answer Q1 in this special case.

Example 1: Say that we have a network of 5 nodes, 2 agents, and each agent visits one

node. The only non-trivial choices for T are 1 or 2, since we can never have 2 agents, each

visiting one node, together visit more than 2 distinct nodes. Each run of the experiment

results in an ordered pair of nodes (Ni; Nj); i = 1; : : : ; 5; j = 1; : : : ; 5. There are 25 equally

likely ways to pick these pairs. We easily see that there are 5 pairs of the form (Ni; Ni), there

are 20 \distinct" pairs. Thus P2(5; 1 : 1) = 5=25 = :2 and P2(5; 1 : 2) = 20=25 = :8

Example 2a: What happens now if we have 5 nodes, 2 agents, T = 2, but each agent

visits 2 distinct nodes (hence 2 distinct atoms per agent). Thus, we wish to determine the

probability P2(5; 2 : 2). Consider the �rst agent A1 (note that we have arbitrarily called one

agent the \�rst"). The 2 nodes visited by A1 are represented as the unordered pair (ij) (thus

(ij) = (ji) ). Consider the 5x5 matrix ai;j ; i = 1; : : : ; 5; j = 1; : : : ; 5. The visits of A1 are

represented by the upper triangular matrix of ai;j . These are the 10 unordered pairs (12),
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(13), (14), (15), (23), (24), (25), (34), (35), (45). The only way to achieve T = 2 is for A2 to

visit exactly the same nodes as A1. Since there are 10 ways for A1 and A2 to agree out of a

total of 100 di�erent possible visits for A1 and A2 (10 for each DMA when unconstrained),

we see that P2(5; 2 : 2) = 10=100 = :1 .

Example 2b: Now we are in the same situation as Ex. 2, except that we have T = 4.

To achieve this the visits from A1 and A2 must have a null intersection. Given any visit

of A1 there are always exactly 3 ways for the A2 visit to have a null intersection with the

given A1 pick. Since there are 10 possible A1 picks, there are 30 ways to achieve T = 4,

thus P2(5; 2 : 4) = 30=100 = :3 . Note that since P2(5; 2 : 1) = 0, and we know that

P2(5; 2 : 2) = :1 and P2(5; 2 : 4) = :3, and P2(5; 2 : T ) = 0, for T > 4, we have that

P2(5; 2 : 3) = :6.

We see that calculating the probabilistic terms PK(M;n : T ) quickly becomes quite

complicated. Therefore we present a closed form solution. Each agent is considered a draw.

Without any restrictions there are
�
M
n

�
ways for a DMA to pick n nodes out of the total ofM

nodes. Since there are 2 draws in Ex. 1 and Ex. 2, let us start withK = 2 . The total number

of draws, without restriction, are
�
M
n

�2
, which is the number of elements in the sample space.

Now let us consider the event under question | this is where the combined number of distinct

nodes picked by both agents is T . A1 has no restriction so there are
�
M
n

�
ways for A1 to pick n

nodes. Now A2 has to pick nodes so that there are exactly T distinct nodes between the two

nodes. Since A1 has chosen n distinct nodes M � n nodes are left unchosen. Thus, A2 must

pick T �n nodes from the M �n. A2 still has n� (T �n) = 2n�T nodes to pick from the n

that A1 has chosen. Therefore there are
�
M�n
T�n

��
n

2n�T

�
ways for A2 to choose. Combining this

with the
�
M
n

�
ways for A1 to pick, we see that P2(M;n : T ) =

(Mn )(
M�n
T�n)(

n
2n�T)

(Mn )
2 =

(M�n
T�n)(

n
2n�T)

(Mn )
.

Of course for things to make sense we must have that n � T � min(M; 2n). Therefore we

have that

P2(M;n : T ) =

8><
>:
�
M
n

��1 �M�n
T�n

��
n

2n�T

�
n � T � min(M; 2n) ,

0 otherwise.

To simplify terminology we use the extended de�nition of the binomial coe�cient
�
a
b

�
as:

�
a

b

�
=

8<
:

a!
(a�b)!b! a � b � 0, a and b are integers

0 otherwise.

So we see that

P2(M;n : T ) =

�
M

n

��1 �
M � n

T � n

��
n

2n� T

�
(1)

Now what happens if we have 3 agents? As before the size of the sample space is
�
M
n

�3
,

which is the total number of ways that 3 agents may pick n nodes each. A1 is unconstrained

so it has
�
M
n

�
ways to pick n nodes. The second agent A2 has n2 = 0; 1; : : : ; n nodes in
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common with A1. Therefore n � n2 nodes picked by A2 are in the remaining M � n nodes

left after A1 picked. Therefore, for n2 �xed, there are
�
n
n2

��
M�n
n�n2

�
ways for A2 to choose nodes.

Of course we must sum over all the di�erent values that n2 may achieve. So all together

there are
Pn

n2=0

�
n
n2

��
M�n
n�n2

�
. For the third agent A3, n+(n�n2) distinct nodes have already

been picked by A1 and A2 from the M nodes. Therefore T � (n+(n�n2)) nodes are picked

from the remaining M � (n+(n�n2)), which accounts for a factor of
�
M�2n+n2
T�2n+n2

�
. But there

are the n� (T �n� (n�n2)) nodes that A3 shares with the picks of A1 and A2. This results

in a factor of
�

2n�n2
3n�T�n2

�
. Putting all three agents together and dividing by the number of

elements in the sample space results in

P3(M;n : T ) =

�
M

n

��2 nX
n2=0

��
n

n2

��
M � n

n� n2

��
2n� n2

3n� T � n2

��
M � 2n+ n2
T � 2n+ n2

��
: (2)

Of course this will only result in non-zero values for n � T � min(M; 3n).

Similarly for 4 agents we can derive the following formula for P4(M;n : T ).

P4(M;n : T ) =�
M

n

��3 nX
n2;n3=0

��
n

n2

��
M � n

n� n2

��
2n� n2
n3

��
M � 2n+ n2

n� n3

�

�
�

3n� n2 � n3
4n� T � n2 � n3

��
M � 3n+ n2 + n3
T � 3n+ n2 + n3

��
:

In general, for K picks of n distinct things from a total out of M the probability of picking T

unique items is:

PK(M;n : T ) =�
M

n

��(K�1) nX
n2;:::;nK�1=0

��
n

n2

��
M � n

n� n2

��
2n� n2
n3

��
M � 2n+ n2

n� n3

�
� � �

� � �
�
(K � 2)n� n2 � : : :� nK�2

nK�1

��
M � (K � 2)n+ n2 + : : :+ nK�2

n� nK�1

�

�
�
(K � 1)n� n2 � : : :� nK�1
Kn� T � n2 � : : :� nK�1

��
M � (K � 1)n+ n2 + : : :+ nK�1
T � (K � 1)n+ n2 + : : :+ nK�1

��
;K � 4: (3)

Thus Eqs. (1), (2), and (3) give us PK(M;n : T ) for all K > 1. As discussed before,

concentrating solely upon the probability PK(M;n : T ) is not su�cient. PK(M;n : T ) is

the probability of getting exactly T unique atoms of information. If the information that

the agents are attempting to retrieve is revealed when T = C, then the correct probabilistic

term of interest (as previously discussed with respect to the threshold) is de�ned as:

PK(M;n : C+)
def
=
X
T�C

PK(M;n : T ) :

This is the probability of K DMA obtaining at least C unique atoms.

Let us consider PK(M;n : T ) and its limiting behavior for some small values of M , n,

and K. The only non-zero probabilities are PK(M;n : T ); for n � T � min(M;K �n). Now
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let us consider how PK(M;n : T ) behaves as M !1. This is the situation when the agents

are searching over a large network.
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Figure 1: Limiting behavior, as M grows, of P3(M; 2 : 5) and P3(M; 2 : 6)

Let M be very large with respect to Kn. The larger M is the smaller the chance of

intersection between nodes picked by di�erent agents. In Figure 1 we see a plot of the

probability P3(M; 2 : 6) (approaches 1) and P3(M; 2 : 5) (approaches 0) against M . Of

course Figure 1 is only dealing with a very few picks of a small number of nodes. The total

number of nodes M must be several orders of magnitude larger that Kn before the limiting

behavior becomes apparent. We will return to limiting behavior in the next subsection.

2.2 Some Simulation Results

In this subsection we study the behavior of P30(M; 20 : T ). Simulations are used since the

time to run the closed form solution is on the order of nK , and thus closed form calculations

are only feasible for very small values of the various terms. Simulations of 1000 were su�cient

for Figure 2 (in later plots we use much larger simulations). Of course one should keep in

mind that theoretically PK(M;n : T ) is never 0, for M � T � Kn, and that PK(M;n : T ) is

never 1, for M � T � Kn. The simulations might have a value of 0 or 1, but this is because

in reality the probability is either extremely small, or large, respectively. Thus we will often

say that a probability is \essentially" 0 or \essentially" 1. In Figure 2 we see what happens

when K = 30 and n = 20. Figure 2 shows the plots of P30(M; 20 : 381), P30(M; 20 : 599),

and P30(M; 20 : 600) for M = 600,1000, 10000, 105, 106, 107,108,109. For the P30(M; 20 : T )
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case, M must be at 109 before we start seriously approaching the limiting probabilities.

With respect to the given M values we see the following:

1. When T = 381, the only probability P30(M; 20 : 381) that is not essentially 0, is when

M = 600. (We used T = 381 because it is a generic \intermediate" value for M when

K = 30 and n = 20.)

2. When T = 599 the probability P30(M; 20 : 599) is essentially 0 forM = 600; 1000; 10000,

then the probability increases, but it decreases again as M grows very large.

3. When T = 600, which is Kn, the probability P30(M; 20 : 600) is essentially 0, for

M = 600; 1000; 10000. The probability then increases until it essentially reaches its

limiting value of 1 around M = 109
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Figure 2: Simulated 1000 times limiting behavior, as M grows, of

P30(M; 20 : 381), P30(M; 20 : 599) and P30(M; 20 : 600)

We see that the distribution of the T values indexed by M, TM (T ) (index over M and let

T run through its values in PK(M;n : T ) with K, n �xed.) behaves like IKn(T ), which is

the distribution that has probability 1 when T = Kn and is zero elsewhere, as M grows. To

be precise:

Given � > 0 and for any value of T, there exists a 	 such that jTM (T )� IKn(T )j < �, for

all M > 	.
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We need not discuss the various types of probabilistic convergence for our needs. It su�ces

that TM (T ) behave like IKn(T ) for large m. We can also heuristically state this as

PK(1; n : T ) =

�
1 T = Kn

0 otherwise
(4)

The limiting behavior of PK(M;n : T ) determines the limiting behavior of PK(M;n : C+)

which we may also state this heuristically as

PK(1; n : C+) =

�
1 C � Kn

0 otherwise
(5)

Let us continue to use P30(M; 20 : T ) as an example. Above we have shown that for M

large the only value of T of interest is the limiting value of 600 = 30 � 20. This agrees with
our intuition. If the \universe" of the network is essentially in�nite, then the di�erent DMA

do not have to be concerned with visiting the same nodes | probabilistically, it will not

happen. Therefore, T = Kn is the only non-zero probability, and it is of course 1. Now let

us look at M values near the minimum limiting value of M = 20. The smallest M can be,

and for the problem to still make sense, is that M is bounded from below by n. Of course,

when M = n the probability collapses to

PK(n; n : T ) =

�
1 T = n

0 otherwise

M = n is the smallest that M can be. What happens when M is small, but not at its

minimum value of n. Here we have 30 DMA, and each DMA randomly travels through a

network of M nodes, and each DMA selects 20 distinct nodes from the network, and then

transfers the atoms of information to the DFA.
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Figure 3: Plots of essentially non-zero values of (simulated 100000 times/M)

of P30(M; 20 : T ), for M = 20; 21; : : : ; 45. Note the simulated distributions have all

their mass at T =M .

We wish to investigate how PK(M;n : T ) behaves asM ! n+. Figure 3 shows the results

of simulations, run 100000 times each, of P30(M; 20 : T ) for M = 20; 21; : : : ; 45. We see that,

for small M , we have

For M\near and greater than" n; PK(M;n : T ) =

�
essentially 1 T =M

essentially 0 otherwise

This is because the universe is so small when M is small that, with probability very close

to 1, all of the nodes are chosen by the 30 DMA. The question is how \near" is \near."

In our example, the above property holds approximately for M � 2n, however, it does not

hold much beyond. In Figure 4 we see what happens as M increase from 45 to 165 in steps

of 10. For M = 55, PK(M;n : T ) has two essentially non-zero values. We stay with two

values in the simulations until M = 85. As M increases the number of essentially non-zero

probabilities increase, and by hooking the values up with a curve they start to slide into a

bell shape. The bell shape is very obvious in Figure 5, where we are investigating M in the

intermediate range of 200 to 1000, in increments of 100. As M increases greatly, as shown in

Figure 6, the bell shape slowly \hits the wall" at T = 600 and �nally we have the limiting

behavior as discussed with respect to Eq. 4. From this analysis we see that PK(M;n : T )

behaves like a uni-valued distribution for M small ( PK(small M;n : T ).

For PK(small M;n : T ) =

�
essentially 1 T =M

essentially 0 otherwise

and it is essentially uni-valued for M large as given by Eq. 4. In the intermediate range the

graph of PK(M;n : T ) slides into a bell shape from the right as M increases, then behaves

like as a bell shape (normal distribution), and then slides into a uni-valued distribution from

the left as M !1.
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Figure 4: Plots of essentially non-zero values of (simulated 100000 times/M)

P30(M; 20 : T ) for M = 45; 55; : : :165.
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Figure 5: Plots of essentially non-zero values of (simulated 100000 times/M)

of P30(M; 20 : T ), as M grows.
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Figure 6: Plots of essentially non-zero values of (simulated 100000 times/M)

of P30(M; 20 : T ) for M = 104; 105; : : : ; 109.

2.3 Cumulative Distributions from the Simulations

Recall that the actual term of interest is PK(M;n : C+). We could of course just sum the

results from the simulations for the T values that are greater than or equal to C. However

we wish to exploit the bell shape of the distribution for M in the intermediate range.

We do not know why the distribution has a bell shape. (We hypothesize that it is related

to the normal approximation to the binomial distribution.) We are presently investigating it

and we hope to discuss it with the workshop participants. With knowledge of the mean of

T , � and variance of T , �2 we could easily compute the probability, for intermediate M , by

PK(M;n : C+) =
X
T�C

PK(M;n : T ) � 1p
2��2

Z 1
C

e�
(x��)2

2�2 dx (6)

We are viewing , with M;n;K �xed, PK(M;n : T ) as a random variable T . Of course this

approximation introduces error by approximating a discrete mass function by a continuous

density function. If C = � then we have, independent of the value of the variance �2, that

PK(M;n : �+) � 1p
2��2

Z 1
�

e�
(x��)2

2�2 dx = 1=2

Note that this only holds in the intermediate range of M values, which is a relative term

with respect to the size of K and n. We cannot determine how to get a computable term
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for the mean T value from the closed form Eqs. (1),(2), and (3). However, we are able

to theoretically determine an approximation to the mean. In fact, when we compare it

with our simulations it seems to be better than an approximation! The problem is that the

same approach does not work for the variance. In our problem a DMA must pick n unique

nodes. There is nothing probabilistic about the number n, it is a hard constraint. However,

if we pick one particular node and ask \What is the probability that a particular DMA

picked this node (given no other information)?" one would answer n=M . In our problem

knowledge of certain nodes being picked a�ects the conditional probability. For example

if we know that a particular DMA did not pick any of the �rst M � n nodes it picks node

�M�n+1 with probability 1. In other words we cannot assume independence. Now we perform

our approximation, assuming independence. For a given node, we say that a DMA has a

probability of picking that node equal to n=M , and all of the nodes are independent. (We

see that on the average, independence does not matter. We note though that the variances

derived assuming independence are larger than sample simulation variances.) Therefore the

probability that a node is not picked by a DMA is 1� (n=M). Hence, the probability that

no DMA picks a particular node is (1� (n=M))
K
. So the probability that at least one DMA

picks the node is 1 � (1� (n=M))
K
. Now we are in the situation of a binomial random

variable, with M trials, where the probability of a success is 1 � (1� (n=M))
K
. Therefore

the mean is M �
�
1� (1� (n=M))

K
�
. Hence, we use this for our approximation of the mean

T value, we call the approximation F , thus F � mean of T , where

F =M �
�
1� (1� (n=M))

K
�

(7)

Table 1: mean values
distribution # simulation sample mean F

P42(500; 17 : T ) 104 383 383
P42(1000; 17 : T ) 104 513 513
P30(600; 20 : T ) 105 383 383
P30(950; 20 : T ) 105 448 448
P30(1000; 20 : T ) 105 455 455
P30(10

4; 20 : T ) 105 583 583
P30(10

5; 20 : T ) 105 598 598
P30(10

6; 20 : T ) 105 600 600

Based on Table 1, and other data we have obtained, it seems that the approximation

might actually be an equality, but we cannot prove it. There are slight di�erences between

the F values and the sample means derived from our simulations. Of course, simulation

sample means are only approximations themselves. Unfortunately, since the closed form for

PK(M;n : T ) is so computationally expensive, we cannot use it to compare F to the actual

mean � of PK(M;n : T ). We note in Table 1, that Eq. 7 agrees with the limiting value of

the distributions, as M grows, and the distributions collapse to a single non-trivial value.

This is because (1� (n=M))
K
= (1� (K n

M
=K))

K
. Since ex = limK!1

�
1 + x

K

�K
we have

for large K that (1� (K n
M
=K))

K � e
�Kn
M . Therefore, for large K, F � M �

�
1� e

�Kn
M

�
.
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By using the Taylor series for ex we have for very large M that F � Kn.

The usefulness of F is that it gives us a way of determining if the probability associated

with a given threshold is more or less than 50%. Of course, if we �nd a way of approximating

the variance we could use any probability, not just 1=2.

In Figure 7 we see the plot of F against di�erent K values (only the integers make sense)

for M = 1000 and n = 20. If the threshold value is above (below) F , then there is less

(greater) than a 50% chance of detecting the intrusion.

Hence, we have developed a useful rule of thumb, for intermediate M , that is easily

calculated from only knowing M , n, and K. Of course, one should keep in mind that M

being in the intermediate range is relative to the sizes of K and n. For very large M , with

moderate n, one would need to deploy a large amount of DMA to use the cut-o� regions. For

non-intermediate M values we can use the our previous limiting results to handle the case

where M is either very small or very large. Thus we have some handle on the probabilistic

behavior of PK(M;m : C+).
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Figure 7: 50% cut-o� regions

Let us go through a speci�c example using F , Figure 7, and Table 1. Consider a network

of size M = 1000, K = 30 DMA, and each DMA visits n = 20 nodes, and we assume

that an intrusion is detected as soon as the DFA has � = 400 atoms of information. Since

400 < F = 455, the probability of detecting the intrusion is greater than 1/2. If we use a

di�erent � that is less than 400, the probability of detecting the intrusion is even greater.

On the other hand if � = 500, we have less than a 50% chance of detecting the intrusion.
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3 More General Scenarios

We have seen in the previous section that even for the simple scenario put forward we

can derive a closed form solution for the probability, but it is not computationally feasible.

Then why did we derive it? Intellectual integrity demands that we attempt to solve the

problem. We do not have the tools to simplify the closed form but we are working on it. The

terms making up the closed form are special functions and one can do approximations with

them. We have also used the closed form to verify our simulations in simple cases. Another

important reason that we presented the closed form solution was to show that if the solution

is so computationally complex, even in the simple scenario put forward, how can we expect

to derive and use a closed form solution in more complex scenarios? With this in mind, until

we can approximate the special functions in PK(M;n : T ), we suggest only simulations for

the more general scenarios.

3.1 Future Work

Previously every DMA chose the same number of nodes. This may be relaxed and the number

of nodes chosen by each DMA can be variable. If this is the case the results from the previous

section can be used to bound the probabilities in this more general scenario.

We also presented a scenario where all the DMA report to the DFA at a set time. What

if the times are variable, this certainly will a�ect the number of nodes visited. One can

also look at the probabilistic terms as a stochastic process where the results change in time.

Certainly, if this is the case and the DMA are traveling around the network the limiting

probabilities would eventual collapse because enough nodes would have been visited.

It is not necessary that every atom of information have the same value. Perhaps some

nodes atoms should be weighted more than others? Perhaps interactions between di�erent

nodes results in di�erent types of information.

4 Conclusion

We have presented a model for a mobile-agent based IDS, called ABIDE. Using ABIDE as

a framework we have analyzed a probabilistic scenario for determining if an intrusion alarm

should be sounded. We have presented the closed form solution and detailed simulation

results for a simple scenario. A rule of thumb has been obtained for determining certain

probabilistic regions of interest. We have also discussed how our results can be used and

extended to more complex scenarios.
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